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Analysis of generalized synchronization in directionally coupled chaotic phase-coherent oscillator
by local minimal fluctuations
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The method of local-minimum fluctuation is proposed to analyze generalized synchronization in direction-
ally coupled chaotic phase-coherent oscillators. It is shown that the emergence of generalized synchronization
is manifested by the qualitative changes in the statistic of local minimum fluctuations of the receiver oscillator.
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Synchronization phenomena in coupled or driven cha
systems have been extensively studied in recent years@1–9#.
Different notions of synchronization, e.g., identical synch
nization, generalized synchronization~GS!, phase synchroni-
zation ~PS!, and lag synchronization~LS! have been intro-
duced in order to explore the qualitative intrinsic dynami
changes caused by the onset of chaos synchronization in
perimental studies. Among these various types of notio
identical synchronization has been exhaustively investiga
in relation to the stability of the synchronized manifol
Studies of GS and PS are also motivated by the need f
better understanding of the complex behaviors found in b
logical systems@7–9#. These explorations are closely relat
to the control of chaos and pattern formations in spatiote
poral systems, where they have revealed rich complex o
embedded in chaotic motions.

Generalized synchronization extends the idea of ident
synchronization to cases of directionally coupled syste
~the so-called drive-response systems! with nonidentical in-
dividual dynamics. Recently, GS has been extended to
cussions of bidirectionally arrays of coupled chaotic syste
@10#. As it is defined in Ref.@1#, the onset of GS in drive-
response chaotic systems corresponds to the formation
continuous mapping that transforms the trajectory on the
tractor of the drive system into that on the attractor of
response system. Several methods have been present
detect and analyze GS.

~i! The auxiliary-system method@1# was proposed as
practical method for identifying such a continuous mapp
by being able to persistently point out the current state of
response system without direct computation of the map. T
method requires the introduction of a third~auxiliary! system
that is an exact replica of the response system. GS yiel
chaotic attractor in the invariant manifoldXr5Xa , whereXr
andXa are variables corresponding to the response and
iliary systems, respectively.

~ii ! The method ofPoincare cross sections@2# helps to
detect the onset of topological equivalence between the
tractors of the synchronized drive and response systems

~iii ! The Lyapunov exponents of the response system,
the conditional Lyapunov exponentsare also useful diagnos
tic tools. Generalized synchronization is achieved if the la
est conditional Lyapunov exponent is negative@except for
some special cases, e.g., the possibility of period-doub
synchronization#.
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~iv! Due to the existence of a map relationship betwe
the driver and receiver, many properties of the trajectories
the synchronized chaotic attractor in the embedding spac
the receiver (RE) and of the related trajectories in the em
bedding space of the driver (DE) should be similar. The idea
of mutual false nearest neighbors@1#, which tests whether
neighborliness inDE translates in a practical numerical sen
to neighborliness inRE , has been used as a tool to study G

~v! An approach based on symbolic analysis has been
sented in Ref.@4#. GS appears when an appropriately defin
conditional entropyhas a sharp minimum.

The exploration of the relation among various types
synchronizations is a subtle issue. Apart from identical s
chronization that requires a complete match of the manifo
of subsystems, a clear distinction of other forms of synch
nization is often difficult and remains an open subject. GS
still a concept that lacks clear definition, and the manne
relates to other synchronization types is still not quite cle
For phase-coherent chaotic oscillators, Parlitzet al. @3#
claimed that in general the presence of GS always implies
if one can define asuitable phase variable. It is not clea
what is the criterion for thesuitable phase variable. One
usually adopts oscillator systems~e.g., Rössler! with mis-
matched parameters in studies of GS. It has been shown
for small parameter misfits, GS is identified as lag synch
nization~the relation between the driver and the receiver i
time shift on the same attractor!, and GS implies PS, i.e., PS
is usually obtained before GS as coupling parameter is
creased; For moderate parameter misfit, GS does neither
respond to LS and nor always imply PS, at least not PS a
is conventionally defined@5#. These distinctions are issue
we deal with further here.

The detection of GS in practice is an important proble
The above methods of detecting GS are all based on a c
parison between the drive and the response. However, u
many circumstances one does not know~or does not need to
know! the information from the drive subsystem~or a black
box!. Can one detect the synchronization information by o
resorting to the receiver? To our knowledge, detection of
based on the time series of the receiver has not been
dressed previously. Such a possibility should be interes
and useful. It may help us understand what happens in
receiver when there is GS for situations when one can o
obtain the time series of the receiver. In this paper, we p
©2002 The American Physical Society08-1



t
i

a
v
a
g
e

ha

tio
r
hi

or

e

re
e
w

he
ve
ith
pa
G

a

p
o

e

nce

c-
. In

t a
s

ne

rge
ely
is a
he
in
e

ati-
n of
PS
tri-
es

e
nly
the

S

es

n.

DAIHAI HE, LEWI STONE, AND ZHIGANG ZHENG PHYSICAL REVIEW E66, 036208 ~2002!
pose the local-minimum fluctuation~LMF! statistics to assis
in detecting GS. In practice precalibration of the system
first required to make the test most successful. This appro
is practical and valid for different model systems we ha
studied. Moreover, as shown below, we can use this
proach to explain why there are difficulties in showin
whether GS does or does not imply PS, a topic that has b
of interest in the literature of late.

A first sketch of the relationship between PS and GS
been given in Ref.@5# for the case of drive-response Ro¨ssler
and Lorenz systems. This study only examined the situa
vd,v r , wherevd is the frequency of the drive oscillato
andv r is the frequency of the receiver. Below we extend t
work by considering both casesvd.v r andvd,v r . There
appears to be a difference between these two cases.

We focus on the situation of phase-coherent oscillat
with moderate parameter misfit where, according to Ref.@5#,
the presence of GS does not always imply the presenc
conventionally defined PS@5#. This in fact conflicts with a
speculation of Parlitz@3#. Our method of examining GS in
this regime is based on LMF’s in the time series of the
ceiver. We found that when the mismatch of the driv
response system becomes too large, GS is accompanied
the emergence~or disappearance! of LMF in the time series
of the receiver. The LMF arises in the response system
part of the process of adjusting and synchronizing~GS! to
the drive system’s significantly different frequency. T
LMF tends to appear in a manner that permits GS but gi
little clear indication of the phase locking associated w
PS. Note that in the situation where the misfit between
rameters of the receiver and driver is relatively small and
implies PS~and LS!, as shown in Ref.@5#, we find no emer-
gence or disappearance of the LMF. In this regime the ph
locking associated with PS is not difficult to achieve.

We first study the drive-response Ro¨ssler oscillators with
parameter misfits (vd,r51.060.03):

ẋd52vdyd2zd ,

ẏd5vdxd10.15yd ,

żd50.21zd~xd210.0!,

ẋr52v ryr2zr1g~xd2xr !,

ẏr5v rxr10.15yr ,

żr50.21zr~xr210.0!. ~1!

The fourth-order Runga-Kutta method with fixed time ste
0.01 is used for all integrations. We analyzed the statistics
the amplitude of the LMF in the time series (lnz) of the
receiver. The reason we chosez (ln z) of the receiver~Rössler
and Foodweb model below! is that~i! more information can
be detected easily from time series of lnz @11# and ~ii ! z is
similar to some biological time series~Lynx Canada, phy-
toplankton in lakes and number of cases of measles in N
York City @8,9#!. One needs to transfer the time series (lnz)
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to the amplitude fluctuation times series as the differe
between each adjacent local extremal values@a local mini-
mum ~or maximum! and a local maximum~or minimum!# in
the time series (lnz) as shown in Fig. 1~a!. Then one obtains
a time series of the local minimal values of amplitude flu
tuation time series and their statistics may be analyzed
Fig. 1~a!, we give a section of time series (lnz) of the re-
ceiver where we identify three fluctuation valuesh1 , h2, and
h3. It is important to note thath1 and h3 are true local-
minimal values. In contrasth2 is not a local-minimum
value—its neighboring peak heights indicate that this is no
local minimum. The statistics are based on values such ah1
andh3. The projections of the receiver’s orbit onx-y plane
before GS and around GS critical point are given in Fig. 1~b!
and 1~c!, respectively. The difference is clear. There is o
LMF pointed out in Fig. 1~c!. These LMF may reveal more
important information for GS, because compared to the la
fluctuations, they prove to be more sensitive to relativ
small changes in parameters. If one looks closer, there
slight qualitative difference between the fluctuations in t
curves ofh1 and h3. The former has a drawn-out shape
the form of a distortion or ‘‘bump’’ that acts to elongate th
local cycle and possibly making detection of PS problem
cal. Thus although the bump shape may keep the relatio
GS and its detection, it may hamper the identification of
by conventional phase frequency methods. The main con
bution of this paper is based on the statistics of LMF valu
such ash1 andh3, which allow the GS transition point to b
clearly detected, even when the receiver’s time series is o
used. The LMF statistics alone make it possible to detect
transition to GS clearly and accurately.

Figure 2 reports the results for the case wherevd,v r .
We give ~i! the time series (lnz) of the driver~labeled with
vd,r values!, ~ii ! the time series of the receiver before G
~labeled with coupling strength!, ~iii ! the time series of the
receiver after GS,~iv! the difference between the time seri

FIG. 1. The schematic description of local-minimum fluctuatio
h1 and h3 are local-minimal fluctuations, buth2 is not ~a!. The
projection of the foodweb attractor on planex-y before GS~b! and
around GS critical point~c!. In ~c! a new LMF is pointed out.
8-2



n
t

e

if
na

ci
n
-
e
ive
n

n
it

he

e
e

-
lin
a

ha
ha
ud
nt
e

re-
er,
.
d

fied
PS
n
iver
de-
ch

que
ne-
e of
an

the
rge

ka-
ion
ef.

the
ing
iza-
os-
ain
ons

-
pa-

eb
il-

ns
ter
S.

t

can
ses

e

-
is

ANALYSIS OF GENERALIZED SYNCHRONIZATION IN . . . PHYSICAL REVIEW E66, 036208 ~2002!
of the receiver and the auxiliary oscillator before GS, and~v!
the difference after GS in Fig. 2~a! from top to bottom. One
can see that with couplingg50.08, there is no GS betwee
receiver and driver. However, when coupling is increased
g50.081, GS appears, since there is no difference betw
the signals of the receiver and auxiliary oscillators~we have
tested different initial conditions!. The same results emerge
GS is detected through calculating the maximal conditio
Lyapunov exponent.

In this case, the misfit between driver and receiver os
lators is relatively large, and although there is GS we fou
it difficult to find indications of PS~i.e., GS does not neces
sarily imply PS@5#!. Conventional phase analysis techniqu
that require calculating the mean frequency of the rece
and the driver by counting peaks in the time series fail to fi
PS in this parameter regime.~As we will see, for Ro¨ssler
oscillators, when the parameter misfit is much lesser tha
this example, GS always implies PS and GS is identical w
LS.! Now we give the frequency histogram statistics of t
amplitudes of the LMF in Fig. 2~b! with the coupling
strength lesser than the GS critical point~before GS!, and the
result in Fig. 2~c! with the coupling strength greater than th
GS critical point~after GS!. For each coupling strength, w
analyzed a time series of length 53106 after having dis-
carded the initial transient of the same length. In Fig. 2~b!,
with coupling strengthsg50.075–0.079, the frequency his
tograms have three obvious peaks, but those with coup
strengthsg50.081–0.086 only have two peaks. There is
clear transition atg50.08–0.081. In the figure withg
50.075, the arrow demarks the position of the peak t
ultimately disappears. And at the same time, there is a s
increase of the peak corresponding to the larger-amplit
LMF ~see e.g., the arrow in the figure with label 0.086 poi
ing out the peak!. This intriguing change corresponds to th

FIG. 2. The result of Ro¨ssler with vd,v r . ~a! From top to
bottom: time series@ log(z)# of driver, time series of receiver befor
GS, time series of receiver after GS, differenced between receiver
and auxiliary oscillator before GS, and differenced after GS;~b!
statistical curves~histogram! before GS with coupling strength la
beled on the figures~vertical axis is dimensionless, horizontal ax
is amplitude of LMF!; ~c! statistical curve after GS@axis and scale
is the same as~b!#.
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disappearance of small LMF in the time series of the
ceiver. In order to make the receiver in GS with the driv
some of the LMFs merge with their adjacent fluctuations

From Figs. 2~b! and 2~c!, we can see this procedure an
the difference before and after GS. PS could not be identi
for g,0.086, even though GS was often present. At the
critical point (g50.086), the number of fluctuations withi
the same length time series of the driver and the rece
should be equal, this corresponds to the conventionally
fined PS. When the receiver is in PS with the driver, ea
peak in the time series of the receiver must have uni
corresponding peak in the time series of the driver. This o
to-one relation is not necessary for GS. The small chang
the LMF can keep the relation of the GS. Similar result c
be found in the region with the parameter mismatchv r
2vd.0.025, the typical feature is a sharp decrease of
amount of small LMF and a sharp increase of relative la
LMF around the critical point of GS in the amplitude~here
absolute value is adopted! statistics of the LMF.

Consider now another example, based on the Lot
Volterra chaotic foodweb model. The phase synchronizat
in both Rössler and foodweb models has been studied in R
@9#. It was shown that PS has important applications in
study of ecological communities where the spatial coupl
of populations can lead to large-scale complex synchron
tion effects. Here we study the drive-response foodweb
cillators with a moderate parameter misfit where we ag
find that GS does not necessarily imply PS. The equati
are given as follows:

ẋ15x120.2x1y1 /~1.010.05x1!,

ẏ152b1y110.2x1y1 /~1.010.05x1!2y1z1 ,

ż15210~z120.006!1y1z1 ,

ẋ25x220.2x2y2 /~1.010.05x2!,

ẏ252b2y210.2x2y2~1.010.05x2!1y2z21g~y12y2!,

ż25210~z220.006!1y2z21g~z12z2! , ~2!

with parametersb150.97 andb250.9. The relationship be
tween the numerically determined mean frequency and
rameterb1,2 has been given in Ref.@9# and is monotonically
increasing, makingb1,2 somewhat analogous tov1,2 which
controls the frequency of the previous Ro¨ssler system. As
before, since the mean frequency of the driving foodw
oscillator is relatively large compared to the receiving osc
lator, LMF @which appears as very small loops in thex-y
phase plane Fig. 1~c!# emerges at the point where GS begi
to kick in. This contrasts with the situation that the parame
misfit is so small and no LMF appears at the transition to G
From Fig. 3~exactly analogous to Fig. 2!, one can see tha
GS occurs wheng50.119. Comparing Fig. 3~b!, the fre-
quency histograms before GS, and Fig. 3~c!, the frequency
histograms after GS, the transition to GS is obvious. One
see the height of the LMF peaks very close to zero increa
8-3
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abruptly, corresponding to emergence of the extremely sm
LMF. The GS transition asg is increased fromg50.118 to
g50.119 is seen by comparing the histograms in Fig. 3~b!
and 3~c!. The result is consistent with that of Fig. 3~a!. The
bottom two figures give the difference between the rece
and the auxiliary oscillator~coupling strengthg is labeled on
the figure!. When g50.118 there is no GS, but withg
50.119 GS appears. The transition point may also be c
firmed by examination of the maximal conditional Lyapun
exponent, and this result has been tested for various
domly chosen initial conditions.

In Fig. 4, we give another example involving the Ro¨ssler
oscillators but now withvd.v r . One can see that a little
larger coupling strength (g50.11) is required to achieve G
when compared to the casevd,v r (g50.081), even though
the absolute frequency differenceuvd2v r u is exactly the
same. Thus when the driving oscillator has a smaller
quencyv, one might expect adjacent spikes in the receiv
oscillator to somehow merge as it proceeds to synchro
with the driver. If, instead, the faster oscillator drives t
slower oscillator, new spikes~loops! should be expected to

FIG. 3. The result of the second example, foodweb oscillat
with d1.d2; ~a!, ~b!, ~c! same as Fig. 2.

FIG. 4. The result of the third example, Ro¨ssler oscillators with
vd.v r ; ~a!, ~b!, ~c! same as Fig. 2.
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emerge in the receiver time series. The mechanism is
very different. For this example~phase-coherent Ro¨ssler os-
cillators!, it seems mergence of the adjacent small spike
easier than emergence of new spikes.

A visual comparison of Figs. 4~b! and 4~c! makes the
difference between the GS and non-GS state clear. In
4~b!, the LMF is mainly distributed in the relatively large
amplitude regime. Those LMFs having extremely small a
plitudes~almost zero! are either negligible or minor and dis
connected from the main part of the histogram. But in F
4~c!, where there is GS, the histogram is characterized b
connected histogram with one peak in the middle and
that sits on the vertical axis corresponding to extremely sm
amplitudes. In Fig. 4~b! with label g50.109, there is an
arrow pointing out the disconnectedness.

A global view of the situationvd.v r in directionally
coupled Ro¨ssler systems is presented in Fig. 5~for
vd,v r –see also Ref.@5#!. Here we outline the characteris
tics of the LMF statistic in the GS regime but very close
the GS-non-GS bifurcation parameter line@misfit D5(vd
2v r)/2 vs GS critical coupling strengthg]. In Fig. 5~a!, two
lines are given, where the solid line with circles is the G
critical line and the dotted line corresponds to the PS criti
line ~counting the peaks in the time series of lnz to detect
mean phase frequency@11#!, and no PS is observed belo
this line. One can see these two lines intersect atD
50.018. Furthermore, note that atD50.012, there is a
qualitative change in direction of the GS bifurcation lin
Two interesting changes occur in the histograms of
LMFs. First, whenD<0.012 the LMF histograms of the GS
state are characterized by a continuous and connected d
bution. BeyondD50.012, the histogram suddenly chang

s
FIG. 5. The statistical change of LMF around the GS critic

line (vd.v r). ~a! The region of the GS between driver and r
ceiver with parameter misfitD vs coupling strengthg ~solid line
corresponds to GS critical line with eight circles on it!, the statisti-
cal curves of LMF at these eight positions are given in~b! and ~c!
~the dotted line corresponds to the PS critical line!, and no PS is
observed below this line;~b! statistical curves correspond toD50
;0.009; ~c! statistical curves correspond toD50.012–0.021. Two
arrows are drawn to point out the dramatic changes.
8-4
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to two disconnected components. Second, whenD.0.018,
there is a major peak corresponding to the presence of sm
amplitude LMFs. Note that this second change occurs
actly where the GS critical line and PS critical line interse

In directionally coupled-phase coherent oscillators~eg.,
Rössler, UPCA@9#, Rulkov’s circuit @1#! with moderate pa-
rameter misfit, when the mean frequency of the driver^vd&
is obviously larger than that of the receiver^v r&, intuitively
it means that in order to reach GS there must be so
mechanism that generates new spikes in the time series o
receiver. We have seen that upon increasing the couplin
the receiver GS to the driver, there is in fact creation
LMFs consisting of small-amplitude spikes in the time ser
of the receiver. When̂vd& is smaller than̂ v r&, there are
mergences of the adjacent small spikes in the time serie
the receiver, which is attempting to synchronize to the slow
driver. The presence of these LMFs may make it difficult
not impossible to detect PS even it is presented.

In this paper, we analyze GS in directionally coupl
phase-coherent oscillators by observing the LMF. Thou
what we used here is only the distribution of the amplitude
the local-minimal fluctuation, one can also test the distrib
tion of the time between the LMFs. The effectiveness of
present procedure can be intuitively understood as follo
Due to the moderate misfit between the receiver and
driver, the emergence of new topological structures a
changes for the ‘‘attractor’’ of the receiver becomes unavo
able. These new structures and changes are preferen
r-

s,

ys
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reflected on the LMFs rather than other large fluctuatio
@see Figs. 1~b! and 1~c!#, because the former have relative
smaller energyvr 2 if one regards the equations of motion
the receiver as the description of a moving particle~herev
and r are the angle velocity and radius inx-y plane, for
definitions, see Ref.@11#!. When the particle is moving on
the smaller circle with a lower energy, it is easier to sece
from its original orbit due to the forcing from the drive
oscillator. Furthermore, when a map relationship builds
tween the driver and the receiver orbit, the critical charac
istic of such synchronization is the ability to change the a
plitude distribution of LMFs. The method is effective fo
both vd.v r and vd,v r , although one corresponds t
emergence of LMF~abrupt increase of extremely sma
LMF! and the other corresponds to mergence~disappear-
ance! of LMF. By applying this tool, we can find the quali
tative changes in the vicinity of the GS critical line, and it
possible to detect GS in practice when the auxiliary sche
fails in situations such as circuit experiments. Moreov
with this method we can distinguish different kinds of GS
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